Instructor's Solutions Manual

Beverly Fusfield

CALCUlUS \& ITs Applications

 and
Brief Calculus \& Its Applications

Thirteenth Edition

Larry J. Goldstein

Goldstein Educational Technologies

David I. Schneider

University of Maryland

David C. Lay
University of Maryland

Nakhlé Asmar
University of Missouri

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Reproduced by Pearson from electronic files supplied by the author.

Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Publishing as Pearson, 75 Arlington Street, Boston, MA 02116.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.

ISBN-13: 978-0-321-87879-3
ISBN-10: 0-321-87879-5

CONTENTS

Chapter 0 Functions 1
Chapter 1 The Derivative 26
Chapter 2 Applications of the Derivative 77
Chapter 3 Techniques of Differentiation 115
Chapter 4 The Exponential and Natural Logarithmic Functions 141
Chapter 5 Applications of the Exponential and Natural Logarithm Functions 168
Chapter 6 The Definite Integral 182
Chapter 7 Functions of Several Variables 215
Chapter 8 The Trigonometric Functions 245
Chapter 9 Techniques of Integration. 263
Chapter 10 Differential Equations 302
Chapter 11 Taylor Polynomials and Infinite Series 334
Chapter 12 Probability and Calculus 356

Chapter 0 Functions

0.1 Functions and Their Graphs

1.

2.

3.

4.

5.

6.

7. $[2,3)$
8. $\left(-1, \frac{3}{2}\right)$
9. $[-1,0)$
10. $[-1,8)$
11. $(-\infty, 3)$
12. $[\sqrt{2}, \infty)$
13. $f(x)=x^{2}-3 x$
$f(0)=0^{2}-3(0)=0$
$f(5)=5^{2}-3(5)=25-15=10$
$f(3)=3^{2}-3(3)=9-9=0$
$f(-7)=(-7)^{2}-3(-7)=49+21=70$
14. $f(x)=x^{3}+x^{2}-x-1$
$f(1)=1^{3}+1^{2}-1-1=0$
$f(-1)=(-1)^{3}+(-1)^{2}-(-1)-1=0$
$f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)-1=-\frac{9}{8}$
$f(a)=a^{3}+a^{2}-a-1$
15. $g(t)=t^{3}-3 t^{2}+t$
$g(2)=2^{3}-3(2)^{2}+2=8-12+2=-2$
$g\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^{3}-3\left(-\frac{1}{2}\right)^{2}+\left(-\frac{1}{2}\right)$
$=-\frac{1}{8}-\frac{3}{4}-\frac{1}{2}=-\frac{11}{8}$
$g\left(\frac{2}{3}\right)=\left(\frac{2}{3}\right)^{3}-3\left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)$
$=\frac{8}{27}-\frac{12}{9}+\frac{2}{3}=-\frac{10}{27} \approx-.37037$
$g(a)=a^{3}-3 a^{2}+a$
16. $h(s)=\frac{s}{(1+s)}$

$$
\begin{aligned}
& h\left(\frac{1}{2}\right)=\frac{\frac{1}{2}}{\left(1+\frac{1}{2}\right)}=\frac{\frac{1}{2}}{\frac{3}{2}}=\frac{1}{3} \\
& h\left(-\frac{3}{2}\right)=\frac{-\frac{3}{2}}{1+\left(-\frac{3}{2}\right)}=\frac{-\frac{3}{2}}{-\frac{1}{2}}=3 \\
& h(a+1)=\frac{a+1}{1+(a+1)}=\frac{a+1}{a+2}
\end{aligned}
$$

17. $f(x)=x^{2}-2 x$

$$
\begin{aligned}
f(a+1) & =(a+1)^{2}-2(a+1) \\
& =\left(a^{2}+2 a+1\right)-2 a-2=a^{2}-1 \\
f(a+2) & =(a+2)^{2}-2(a+2) \\
& =\left(a^{2}+4 a+4\right)-2 a-4=a^{2}+2 a
\end{aligned}
$$

18. $f(x)=x^{2}+4 x+3$

$$
\begin{aligned}
f(a-1) & =(a-1)^{2}+4(a-1)+3 \\
& =\left(a^{2}-2 a+1\right)+(4 a-4)+3 \\
& =a^{2}+2 a \\
f(a-2) & =(a-2)^{2}+4(a-2)+3 \\
& =\left(a^{2}-4 a+4\right)+(4 a-8)+3 \\
& =a^{2}-1
\end{aligned}
$$

19. a. $f(0)$ represents the number of laptops sold in 2010.
b. $\quad f(6)=150+2(6)+6^{2}$

$$
=150+12+36=198
$$

20. $R(x)=\frac{100 x}{b+x}, x \geq 0$
a. $\quad b=20, x=60$

$$
R(60)=\frac{100(60)}{20+60}=75
$$

The solution produces a 75% response.
b. If $R(50)=60$, then

$$
\begin{aligned}
60 & =\frac{100(50)}{b+50} \\
60 b+3000 & =5000 \\
b & =\frac{100}{3}
\end{aligned}
$$

This particular frog has a positive constant of $33 . \overline{3}$.
21. $f(x)=\frac{8 x}{(x-1)(x-2)}$
all real numbers such that $x \neq 1,2$ or $(-\infty,-1) \cup(-1,2) \cup(2, \infty)$
22. $f(t)=\frac{1}{\sqrt{t}}$
all real numbers such that $t>0$ or $(0, \infty)$
23. $g(x)=\frac{1}{\sqrt{3-x}}$
all real numbers such that $x<3$ or $(-\infty,-3)$
24. $g(x)=\frac{4}{x(x+2)}$
all real numbers such that $x \neq 0,-2$ or $(-\infty,-2) \cup(-2,0) \cup(0, \infty)$
25. $f(x)=\frac{3 x-5}{x^{2}+x-6}$

The denominator is zero for $x=-3$ and $x=2$, so the domain consists of all real numbers such that $x \neq-3,2$ or
$(-\infty,-3) \cup(-3,2) \cup(2, \infty)$.
26. $f(x)=\frac{1}{3 x^{2}+1}$

The domain consists of all real numbers, or $(-\infty, \infty)$.
27. $f(x)=\sqrt{2 x+7}+\sqrt{x}$

The domain consists of all real numbers greater than or equal to 0 , or $[0, \infty)$.
28. $f(x)=\frac{\sqrt{2 x+1}}{\sqrt{1-x}}$

The denominator is greater than 0 for all $x<1$, and the numerator is defined for all $x \geq-\frac{1}{2}$.
Thus, the domain is $-\frac{1}{2} \leq x<1$, or $\left[-\frac{1}{2}, 1\right)$.
29. function
30. not a function
31. not a function
32. not a function
33. not a function
34. function
35. $f(0)=1 ; f(7)=-1$
36. $f(2)=3 ; f(-1)=0$
37. positive
38. negative
39. $[-1,3]$
40. $-1,5,9$
41. $(-\infty,-1] \cup[5,9]$
42. $[-1,5] \cup[9, \infty]$
43. $f(1) \approx .03 ; f(5) \approx .037$
44. $f(6) \approx .03$
45. $[0, .05]$
46. $t \approx 3$
47. $f(x)=\left(x-\frac{1}{2}\right)(x+2)$
$f(3)=\left(3-\frac{1}{2}\right)(3+2)=\frac{25}{2}$
Thus, $(3,12)$ is not on the graph.
48. $f(x)=x(5+x)(4-x)$
$f(-2)=-2(5+(-2))(4-(-2))=-36$
So $(-2,12)$ is not on the graph.
49. $g(x)=\frac{3 x-1}{x^{2}+1}$
$g\left(\frac{1}{3}\right)=\frac{3\left(\frac{1}{2}\right)-1}{\left(\frac{1}{2}\right)^{2}+1}=\frac{\frac{1}{2}}{\frac{5}{4}}=\frac{2}{5}$
So $\left(\frac{1}{2}, \frac{2}{5}\right)$ is on the graph.
50. $g(x)=\frac{\left(x^{2}+4\right)}{(x+2)}$
$g\left(\frac{2}{3}\right)=\frac{\left(\frac{2}{3}\right)^{2}+4}{\frac{2}{3}+2}=\frac{\frac{40}{9}}{\frac{8}{3}}=\frac{5}{3}$
So $\left(\frac{2}{3}, \frac{5}{3}\right)$ is on the graph.
51. $f(x)=x^{3}$
$f(a+1)=(a+1)^{3}$
52. $f(x)=\left(\frac{5}{x}\right)-x$
$f(2+h)=\frac{5}{(2+h)}-(2+h)$
$=\frac{5-(2+h)^{2}}{(2+h)}=\frac{1-4 h-h^{2}}{2+h}$
53. $f(x)= \begin{cases}\sqrt{x} & \text { for } 0 \leq x<2 \\ 1+x & \text { for } 2 \leq x \leq 5\end{cases}$
$f(1)=\sqrt{1}=1 ; \quad f(2)=1+2=3$
$f(3)=1+3=4$
54. $f(x)= \begin{cases}\frac{1}{x} & \text { for } 1 \leq x \leq 2 \\ x^{2} & \text { for } 2<x\end{cases}$
$f(1)=\frac{1}{1}=1 ; f(2)=\frac{1}{2}$
$f(3)=3^{2}=9$
55. $f(x)= \begin{cases}\pi x^{2} & \text { for } x<2 \\ 1+x & \text { for } 2 \leq x \leq 2.5 \\ 4 x & \text { for } 2.5<x\end{cases}$
$f(1)=\pi(1)^{2}=\pi$
$f(2)=1+2=3$
$f(3)=4(3)=12$
56. $f(x)=\left\{\begin{array}{cl}\frac{3}{4-x} & \text { for } x<2 \\ 2 x & \text { for } 2 \leq x<3 \\ \sqrt{x^{2}-5} & \text { for } 3 \leq x\end{array}\right.$
$f(1)=\frac{3}{4-1}=1$
$f(2)=2(2)=4$
$f(3)=\sqrt{3^{2}-5}=\sqrt{4}=2$
57. $f(x)= \begin{cases}.06 x & \text { for } 50 \leq x \leq 300 \\ .02 x+12 & \text { for } 300<x \leq 600 \\ .015 x+15 & \text { for } 600<x\end{cases}$
58.

59.

60. Entering $Y_{1}=1 / X+\mathbf{1}$ will graph the function $f(x)=\frac{1}{x}+1$. In order to graph the function $f(x)=\frac{1}{x+1}$, you need to include parentheses in the denominator: $Y_{1}=\mathbf{1} /(X+1)$.
61. Entering $Y_{1}=X \wedge 3 / 4$ will graph the function $f(x)=\frac{x^{3}}{4}$. In order to graph the function $y=x^{3 / 4}$, you need to include parentheses in the exponent: $\mathbf{Y}_{\mathbf{1}}=\mathbf{X}^{\wedge}(\mathbf{3} / \mathbf{4})$.
62. $Y_{1}=X^{\wedge} 3-33 X^{\wedge} 2+120 X+1500$

63. $\mathrm{Y}_{1}=-\mathrm{X}^{\wedge} 2+2 \mathrm{x}+2$

$[-2,4]$ by $[-8,5]$
64. $Y_{1}=(X+1)^{\wedge}(1 / 2)$

$[0,10]$ by $[-1,4]$
65. $\mathrm{Y}_{1}=1 /\left(\mathrm{X}^{\wedge} 2+1\right)$

$[-4,4]$ by $[-.5,1.5]$

0.2 Some Important Functions

1. $y=2 x-1$

$$
\begin{array}{r|r}
x & y \\
\hline 1 & 1 \\
0 & -1 \\
-1 & -3
\end{array}
$$

2. $y=3$

3. $y=3 x+1$

$$
\begin{array}{c|c}
x & y \\
\hline 1 & 4 \\
0 & 1 \\
-1 & -2
\end{array}
$$

4. $y=-\frac{1}{2} x-4$

x	y
2	-5
0	-4
-2	-3

5. $x=-2 x+3$

x	y
-1	5
0	3
1	1

6. $x=0$

7. $x-y=0$

8. $3 x+2 y=-1$

x	y
3	-5
1	-2
-3	4

9. $x=2 y-1$

x	y
3	2
1	1
-3	-1

10. $\frac{x}{2}+\frac{y}{3}=1$

$$
\begin{array}{r|c}
x & y \\
\hline 2 & 0 \\
0 & 3 \\
-2 & 6
\end{array}
$$

11. $f(x)=9 x+3$
$f(0)=9(9)+3=3$
The y-intercept is $(0,3)$.
$9 x+3=0 \Rightarrow 9 x=-3 \Rightarrow x=-\frac{1}{3}$
The x-intercept is $\left(-\frac{1}{3}, 0\right)$.
12. $f(x)=-\frac{1}{2} x-1$
$f(0)=-\frac{1}{2}(0)-1=-1$
The y-intercept is $(0,-1)$.
$-\frac{1}{2} x-1=0 \Rightarrow-\frac{1}{2} x=1 \Rightarrow x=-2$
The x-intercept is $(-2,0)$.
13. $f(x)=5$

The y-intercept is $(0,5)$.
There is no x-intercept.
14. $f(x)=14$

The y-intercept is $(0,14)$.
There is no x-intercept.
15. $x-5 y=0$
$0-5 y=0 \Rightarrow y=0$
The x - and y-intercept is $(0,0)$.
16. $2+3 x=2 y$
$2+3(0)=2 y \Rightarrow y=1$
The y-intercept is $(0,1)$.
$2+3 x=2(0) \Rightarrow 3 x=-2 \Rightarrow x=-\frac{2}{3}$
The x-intercept is $\left(-\frac{2}{3}, 0\right)$.
17. $f(x)=\left(\frac{K}{V}\right) x+\frac{1}{V}$
a. $f(x)=.2 x+50$

We have $\frac{K}{V}=.2$ and $\frac{1}{V}=50$. If $\frac{1}{V}=50$, then $V=\frac{1}{50}$. Now, $\frac{K}{V}=.2$ implies $\frac{K}{\frac{1}{50}}=.2$, so $K=\frac{1}{5} \cdot \frac{1}{50}=\frac{1}{250}$.
b. $\quad y=\left(\frac{K}{V}\right) x+\frac{1}{V},\left(\frac{K}{V}\right) \cdot 0+\frac{1}{V}=\frac{1}{V}$, so the y-intercept is $\left(0, \frac{1}{V}\right)$. Solving $\left(\frac{K}{V}\right) x+\frac{1}{V}=0$, we get $\frac{K}{V} x=-\frac{1}{V} \Rightarrow x=-\frac{1}{K}$, so the x-intercept is $\left(-\frac{1}{K}, 0\right)$.
18. From $17(\mathrm{~b}),\left(-\frac{1}{K}, 0\right)$ is the x-intercept. From the experimental data, $(-500,0)$ is also the x-intercept. Thus $-\frac{1}{K}=-500, K=\frac{1}{500}$. Again from $17(\mathrm{~b}),\left(0, \frac{1}{V}\right)$ is the y-intercept. From the experimental data, $(0,60)$ is also the y-intercept. Thus $\frac{1}{V}=60, V=\frac{1}{60}$.
19. a. Cost is $\$(24+200(.25))=\$ 74$.
b. $f(x)=.25 x+24$
20. Let x be the volume of gas (in thousands of cubic feet) extracted.
$f(x)=5000+.10 x$
21. Let x be the number of days of hospital confinement.
$f(x)=700 x+1900$
22. $6 x-40=350 \Rightarrow x=65 \mathrm{mph}$
23. $f(x)=\frac{50 x}{105-x}, 0 \leq x \leq 100$

From example 6, we know that $f(70)=100$. The cost to remove 75% of the pollutant is $f(75)=\frac{50 \cdot 75}{105-75}=125$.
The cost of removing an extra 5% is $\$ 125-\$ 100=\$ 25$ million. To remove the final 5% the cost is $f(100)-f(95)=1000-475=\$ 525$ million. This costs 21 times as much as the cost to remove the next 5% after the first 70% is removed.
24. a. $f(85)=\frac{20(85)}{102-85}=\$ 100$ million
b. $f(100)-f(95)=1000-271.43 \approx \$ 728.57$ million
25. $y=3 x^{2}-4 x$
$a=3, b=-4, c=0$
26. $y=\frac{x^{2}-6 x+2}{3}=\frac{1}{3} x^{2}-2 x+\frac{2}{3}$
$a=\frac{1}{3}, b=-2, c=\frac{2}{3}$
28. $y=3-2 x+4 x^{2}$
$a=4, b=-2, c=3$
29. $y=1-x^{2}$
$a=-1, b=0, c=1$
30. $y=\frac{1}{2} x^{2}+\sqrt{3} x-\pi$
$a=\frac{1}{2}, b=\sqrt{3}, c=-\pi$
31. $f(x)= \begin{cases}3 x & \text { for } 0 \leq x \leq 1 \\ \frac{9}{2}-\frac{3}{2} x & \text { for } x>1\end{cases}$

$0 \leq x \leq 1$					
			$x>1$		
x	$f(x)=3 x$		x		$f(x)=\frac{9}{2}-\frac{3}{2} x$
:---:					
0					

32. $f(x)=\left\{\begin{array}{lll}1+x & \text { for } x \leq 3 \\ 4 & \text { for } x>3\end{array}\right.$

$x \leq 3$ x	$f(x)=1+x$
0	1
3	4

$x>3$ x	
4	$f(x)=4$
5	4

27. $y=3 x-2 x^{2}+1$
$a=-2, b=3, c=1$
33. $f(x)=\left\{\begin{array}{lr}3 & \text { for } x<2 \\ 2 x+1 & \text { for } x \geq 2\end{array}\right.$

$x<2$		$x \geq 2$	
x	$f(x)=3$	x	$f(x)=2 x+1$
1	3	2	5
0	3	3	7
${ }_{5}^{y} /$			
	$\begin{aligned} & 1 \\ & 2 \end{aligned}$		

34. $f(x)= \begin{cases}\frac{1}{2} x & \text { for } 0 \leq x<4 \\ 2 x-3 & \text { for } 4 \leq x \leq 5\end{cases}$

35. $f(x)= \begin{cases}4-x & \text { for } 0 \leq x<2 \\ 2 x-2 & \text { for } 2 \leq x<3 \\ x+1 & \text { for } x \geq 3\end{cases}$

$0 \leq x<2$			
x	$f(x)=4-x$	\quad	$2 \leq x<3$
:---:			
0			

	$x \geq 3$
x	$f(x)=x+1$
3	4
4	5

36. $f(x)= \begin{cases}4 x & \text { for } 0 \leq x<1 \\ 8-4 x & \text { for } 1 \leq x<2 \\ 2 x-4 & \text { for } x \geq 2\end{cases}$

	$0 \leq x<1$
x	$f(x)=4 x$
0	0
$\frac{1}{2}$	2

x	$f(x)=8-4 x$
1	4
$\frac{3}{2}$	2

$x \geq 2$

37. $f(x)=x^{100}, x=-1$
$f(-1)=(-1)^{100}=1$
38. $f(x)=x^{5}, x=\frac{1}{2}$
$f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$
39. $f(x)=|x|, x=10^{-2}$
$f\left(10^{-2}\right)=\left|10^{-2}\right|=10^{-2}$
40. $f(x)=|x|, x=\pi$
$f(\pi)=|\pi|=\pi$
41. $f(x)=|x|, x=-2.5$
$f(-2.5)=|-2.5|=2.5$
42. $f(x)=|x|, x=-\frac{2}{3}$ $f\left(-\frac{2}{3}\right)=\left|-\frac{2}{3}\right|=\frac{2}{3}$
43.

44.

45.

46.

0.3 The Algebra of Functions

1. $f(x)+g(x)=\left(x^{2}+1\right)+9 x=x^{2}+9 x+1$
2. $f(x)-h(x)=\left(x^{2}+1\right)-\left(5-2 x^{2}\right)=3 x^{2}-4$
3. $f(x) g(x)=\left(x^{2}+1\right)(9 x)=9 x^{3}+9 x$
4. $g(x) h(x)=(9 x)\left(5-2 x^{2}\right)=45 x-18 x^{3}$
5. $\frac{f(t)}{g(t)}=\frac{t^{2}+1}{9 t}=\frac{t^{2}}{9 t}+\frac{1}{9 t}=\frac{t}{9}+\frac{1}{9 t}=\frac{t^{2}+1}{9 t}$
6. $\frac{g(t)}{h(t)}=\frac{9 t}{5-2 t^{2}}$
7. $\frac{2}{x-3}+\frac{1}{x+2}=\frac{2(x+2)+(x-3)}{(x-3)(x+2)}$

$$
=\frac{3 x+1}{x^{2}-x-6}
$$

8. $\frac{3}{x-6}+\frac{-2}{x-2}=\frac{3(x-2)+(-2)(x-6)}{(x-6)(x-2)}$

$$
=\frac{x+6}{x^{2}-8 x+12}
$$

9. $\frac{x}{x-8}+\frac{-x}{x-4}=\frac{x(x-4)+(-x)(x-8)}{(x-8)(x-4)}$

$$
=\frac{4 x}{x^{2}-12 x+32}
$$

10. $\frac{-x}{x+3}+\frac{x}{x+5}=\frac{(-x)(x+5)+x(x+3)}{(x+3)(x+5)}$

$$
=\frac{-2 x}{x^{2}+8 x+15}
$$

11. $\frac{x+5}{x-10}+\frac{x}{x+10}=\frac{(x+5)(x+10)+x(x-10)}{(x-10)(x+10)}$

$$
=\frac{2 x^{2}+5 x+50}{x^{2}-100}
$$

12. $\frac{x+6}{x-6}+\frac{x-6}{x+6}=\frac{(x+6)(x+6)+(x-6)(x-6)}{(x-6)(x+6)}$

$$
=\frac{2 x^{2}+72}{x^{2}-36}
$$

13. $\frac{x}{x-2}-\frac{5-x}{5+x}=\frac{x(5+x)-(5-x)(x-2)}{(x-2)(5+x)}$

$$
=\frac{2 x^{2}-2 x+10}{x^{2}+3 x-10}
$$

14. $\frac{t}{t-2}-\frac{t+1}{3 t-1}=\frac{t(3 t-1)-(t-2)(t+1)}{(t-2)(3 t-1)}$

$$
=\frac{2 t^{2}+2}{3 t^{2}-7 t+2}
$$

15. $\frac{x}{x-2} \cdot \frac{5-x}{5+x}=\frac{-x^{2}+5 x}{x^{2}+3 x-10}$
16. $\frac{5-x}{5+x} \cdot \frac{x+1}{3 x-1}=\frac{-x^{2}+4 x+5}{3 x^{2}+14 x-5}$
17. $\frac{\frac{x}{x-2}}{\frac{5-x}{5+x}}=\frac{x}{x-2} \cdot \frac{5+x}{5-x}=\frac{x^{2}+5 x}{-x^{2}+7 x-10}$
18. $\frac{\frac{s+1}{3 s-1}}{\frac{s}{s-2}}=\frac{s+1}{3 s-1} \cdot \frac{s-2}{s}=\frac{s^{2}-s-2}{3 s^{2}-s}$
19. $\frac{x+1}{(x+1)-2} \cdot \frac{5-(x+1)}{5+(x+1)}=\frac{x+1}{x-1} \cdot \frac{-x+4}{6+x}$

$$
=\frac{-x^{2}+3 x+4}{x^{2}+5 x-6}
$$

20. $\frac{x+2}{(x+2)-2}+\frac{5-(x+2)}{5+(x+2)}$

$$
\begin{aligned}
& =\frac{x+2}{x}+\frac{3-x}{x+7} \\
& =\frac{(x+2)(x+7)+(3-x)(x)}{x(x+7)}=\frac{12 x+14}{x^{2}+7 x}
\end{aligned}
$$

21. $\frac{\frac{5-(x+5)}{5+(x+5)}}{\frac{x+5}{(x+5)-2}}=\frac{5-(x+5)}{5+(x+5)} \cdot \frac{(x+5)-2}{x+5}$

$$
\begin{aligned}
& =\frac{-x}{10+x} \cdot \frac{x+3}{x+5} \\
& =\frac{-x^{2}-3 x}{x^{2}+15 x+50}
\end{aligned}
$$

22. $\frac{\frac{1}{t}}{\frac{1}{t}-2}=\frac{1}{t} \cdot \frac{t}{1-2 t}=\frac{1}{1-2 t}, t \neq 0$
23. $\frac{5-\frac{1}{u}}{5+\frac{1}{u}}=\frac{5 u-1}{u} \cdot \frac{u}{5 u+1}=\frac{5 u-1}{5 u+1}, u \neq 0$
24. $\frac{\frac{1}{x^{2}}+1}{3\left(\frac{1}{x^{2}}\right)-1}=\frac{1+x^{2}}{x^{2}} \cdot \frac{x^{2}}{3-x^{2}}=\frac{1+x^{2}}{3-x^{2}}, x \neq 0$
25. $f\left(\frac{x}{1-x}\right)=\left(\frac{x}{1-x}\right)^{6}$
26. $h\left(t^{6}\right)=\left(t^{6}\right)^{3}-5\left(t^{6}\right)^{2}+1=t^{18}-5 t^{12}+1$
27. $h\left(\frac{x}{1-x}\right)=\left(\frac{x}{1-x}\right)^{3}-5\left(\frac{x}{1-x}\right)^{2}+1$
28. $g\left(x^{6}\right)=\frac{x^{6}}{1-x^{6}}$
29. $g\left(t^{3}-5 t^{2}+1\right)=\frac{t^{3}-5 t^{2}+1}{1-\left(t^{3}-5 t^{2}+1\right)}$

$$
=\frac{t^{3}-5 t^{2}+1}{-t^{3}+5 t^{2}}
$$

30. $f\left(x^{3}-5 x^{2}+1\right)=\left(x^{3}-5 x^{2}+1\right)^{6}$
31. $(x+h)^{2}-x^{2}=x^{2}+2 x h+h^{2}-x^{2}$

$$
=2 x h+h^{2}
$$

32. $\frac{1}{x+h}-\frac{1}{x}=\frac{x-x-h}{x(x+h)}=\frac{-h}{x^{2}+x h}$
33. $\frac{\left[4(t+h)-(t+h)^{2}\right]-\left(4 t-t^{2}\right)}{h}$

$$
\begin{aligned}
& =\frac{4 t+4 h-\left(t^{2}+2 t h+h^{2}\right)-4 t+t^{2}}{h} \\
& =\frac{4 h-2 t h-h^{2}}{h}=\frac{h(4-2 t-h)}{h} \\
& =4-2 t-h
\end{aligned}
$$

34.

$$
\begin{aligned}
& \frac{\left[(t+h)^{3}+5\right]-\left(t^{3}+5\right)}{h} \\
& \quad=\frac{t^{3}+3 t^{2} h+3 t h^{2}+h^{3}+5-t^{3}-5}{h} \\
& \quad=\frac{3 t^{2} h+3 t h^{2}+h^{3}}{h}=\frac{h\left(3 t^{2}+3 t h+h^{2}\right)}{h} \\
& \quad=3 t^{2}+3 t h+h^{2}
\end{aligned}
$$

35. a. $C(A(t))=3000+80\left(20 t-\frac{1}{2} t^{2}\right)$

$$
=3000+1600 t-40 t^{2}
$$

b. $\quad C(2)=3000+1600(2)-40(2)^{2}$

$$
=3000+3200-160=\$ 6040
$$

36. a. $C(f(t))$

$$
\begin{aligned}
& =.1(10 t-5)^{2}+25(10 t-5)+200 \\
& =.1\left(100 t^{2}-100 t+25\right)+250 t-125+200 \\
& =10 t^{2}+240 t+77.5
\end{aligned}
$$

b. $\quad C(4)=10(4)^{2}+240(4)+77.5=\$ 1197.50$
37. $h(x)=f(8 x+1)=\left(\frac{1}{8}\right)(8 x+1)=x+\frac{1}{8}$ $h(x)$ converts from British to U.S. sizes.
38. $f(x+1)$:

$[-10,10]$ by $[0,20]$
$f(x-1)$:

$[-10,10]$ by $[0,20]$
(continued on next page)

(continued)

$[-10,10]$ by $[0,20]$
$f(x-2)$:

$[-10,10]$ by $[0,20]$
The graph of $f(x+a)$ is the graph of $f(x)$
shifted to the left (if $a>0$) or to the right (if $a<0$) by $|a|$ units.
39. $f(x)+1$:

$[-5,5]$ by $[-5,15$

$[-5,5]$ by $[-5,15]$
$f(x)+2$:

$[-5,5]$ by $[-5,15$

$[-5,5]$ by $[-5,15]$
The graph of $f(x)+c$ is the graph of $f(x)$
shifted up (if $c>0$) or down (if $c<0$) by $|c|$ units.
40. This is the graph of $f(x)=x^{2}$ shifted 1 unit to the right and 2 units up.

$[-5,5]$ by $[-5,15]$
41. This is the graph of $f(x)=x^{2}$ shifted 2 units to the left and 1 unit down.

$[-5,5]$ by $[-5,15]$
42.

$[-4,4]$ by $[-10,10]$
They are not the same function.
43.

$$
\begin{aligned}
f(f(x)) & =f\left(\frac{x}{x-1}\right)=\frac{\frac{x}{x-1}}{\frac{x}{x-1}-1} \\
& =\frac{x}{x-(x-1)}=x, x \neq 1
\end{aligned}
$$

0.4 Zeros of Functions-The Quadratic Formula and Factoring

1. $f(x)=2 x^{2}-7 x+6$
$2 x^{2}-7 x+6=0$
$a=2, b=-7, c=6$
$\sqrt{b^{2}-4 a c}=\sqrt{49-4(2)(6)}=\sqrt{1}=1$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{7 \pm 1}{4}=2, \frac{3}{2}$
2. $f(x)=3 x^{2}+2 x-1$
$3 x^{2}+2 x-1=0$
$a=3, b=2, c=-1$
$\sqrt{b^{2}-4 a c}=\sqrt{4^{2}-4(3)(-1)}=\sqrt{16}=4$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-2 \pm 4}{6}=\frac{1}{3},-1$
3. $f(t)=4 t^{2}-12 t+9$
$4 t^{2}-12 t+9=0$
$t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{12 \pm \sqrt{(-12)^{2}-4(4)(9)}}{2(4)}$
$=\frac{12 \pm \sqrt{0}}{8}=\frac{3}{2}$
4. $f(x)=\frac{1}{4} x^{2}+x+1$
$\frac{1}{4} x^{2}+x+1=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-1 \pm \sqrt{1^{2}-4\left(\frac{1}{4}\right)(1)}}{2\left(\frac{1}{4}\right)}$
$=\frac{-1 \pm \sqrt{0}}{\frac{1}{2}}=-2$
5. $f(x)=-2 x^{2}+3 x-4$
$-2 x^{2}+3 x-4=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-3 \pm \sqrt{3^{2}-4(-2)(-4)}}{2(-2)}$
$=\frac{-3 \pm \sqrt{-23}}{-4}$
$\sqrt{-23}$ is undefined, so $f(x)$ has no real zeros.
6. $f(a)=11 a^{2}-7 a+1$
$11 a^{2}-7 a+1=0$
$a=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{7 \pm \sqrt{(-7)^{2}-4(11)(1)}}{2(11)}$
$=\frac{7 \pm \sqrt{5}}{22}=\frac{7+\sqrt{5}}{22}, \frac{7-\sqrt{5}}{22}$
7. $5 x^{2}-4 x-1=0$

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{4 \pm \sqrt{(-4)^{2}-4(5)(-1)}}{2(5)} \\
& =\frac{4 \pm \sqrt{36}}{10}=\frac{4 \pm 6}{10}=1,-\frac{1}{5}
\end{aligned}
$$

8. $x^{2}-4 x+5=0$

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{4 \pm \sqrt{(-4)^{2}-4(1)(5)}}{2(1)} \\
& =\frac{4 \pm \sqrt{-4}}{2}
\end{aligned}
$$

$\sqrt{-4}$ is undefined, so there is no real solution.
9. $15 x^{2}-135 x+300=0$

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{135 \pm \sqrt{(-135)^{2}-4(15)(300)}}{2(15)} \\
& =\frac{135 \pm \sqrt{225}}{30}=\frac{135 \pm 15}{30}=5,4
\end{aligned}
$$

10. $z^{2}-\sqrt{2} z-\frac{5}{4}=0$
$z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$=\frac{\sqrt{2} \pm \sqrt{(-\sqrt{2})^{2}-4(1)\left(-\frac{5}{4}\right)}}{2(1)}=\frac{\sqrt{2} \pm \sqrt{7}}{2}$
$=\frac{\sqrt{2}+\sqrt{7}}{2}, \frac{\sqrt{2}-\sqrt{7}}{2}$
11. $\frac{3}{2} x^{2}-6 x+5=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{6 \pm \sqrt{(-6)^{2}-4\left(\frac{3}{2}\right)(5)}}{2\left(\frac{3}{2}\right)}$ $=\frac{6 \pm \sqrt{6}}{3}=2+\frac{\sqrt{6}}{3}, 2-\frac{\sqrt{6}}{3}$
12. $9 x^{2}-12 x+4=0$

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{12 \pm \sqrt{(-12)^{2}-4(9)(4)}}{2(9)} \\
& =\frac{12 \pm \sqrt{0}}{18}=\frac{2}{3}
\end{aligned}
$$

13. $x^{2}+8 x+15=(x+5)(x+3)$
14. $x^{2}-10 x+16=(x-2)(x-8)$
15. $x^{2}-16=(x-4)(x+4)$
16. $x^{2}-1=(x+1)(x-1)$
17. $3 x^{2}+12 x+12=3\left(x^{2}+4 x+4\right)$

$$
=3(x+2)(x+2)=3(x+2)^{2}
$$

18. $2 x^{2}-12 x+18=2\left(x^{2}-6 x+9\right)$

$$
=2(x-3)(x-3)=2(x-3)^{2}
$$

19. $30-4 x-2 x^{2}=-2\left(-15+2 x+x^{2}\right)$

$$
=-2(x-3)(x+5)
$$

20. $15+12 x-3 x^{2}=-3\left(-5-4 x+x^{2}\right)$

$$
=-3(x-5)(x+1)
$$

21. $3 x-x^{2}=x(3-x)$
22. $4 x^{2}-1=(2 x+1)(2 x-1)$
23. $6 x-2 x^{3}=-2 x\left(x^{2}-3\right)$

$$
=-2 x(x-\sqrt{3})(x+\sqrt{3})
$$

24. $16 x+6 x^{2}-x^{3}=x\left(16+6 x-x^{2}\right)$

$$
\begin{aligned}
& =x(8-x)(x+2) \\
& =-x(x-8)(x+2)
\end{aligned}
$$

25. $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$
26. $x^{3}+125=(x+5)\left(x^{2}-5 x+25\right)$
27. $8 x^{3}+27=(2 x+3)\left(4 x^{2}-6 x+9\right)$
28. $x^{3}-\frac{1}{8}=\left(x-\frac{1}{2}\right)\left(x^{2}+\frac{x}{2}+\frac{1}{4}\right)$
29. $x^{2}-14 x+49=(x-7)^{2}$
30. $x^{2}+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^{2}$
31. $2 x^{2}-5 x-6=3 x+4$ $2 x^{2}-8 x-10=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{8 \pm \sqrt{(-8)^{2}-4(2)(-10)}}{2(2)}$
$=\frac{8 \pm \sqrt{144}}{4}=\frac{8 \pm 12}{4}=5,-1$
$y=3 x+4=15+4=19$
$y=-3+4=1$
Points of intersection: $(5,19),(-1,1)$
32. $x^{2}-10 x+9=x-9$
$x^{2}-11 x+18=0$
$(x-9)(x-2)=0$
$x=9,2$
$y=x-9=9-9=0$
$y=2-9=-7$
Points of intersection: $(9,0),(2,-7)$
33. $y=x^{2}-4 x+4$
$y=12+2 x-x^{2}$

$$
\begin{aligned}
x^{2}-4 x+4 & =12+2 x-x^{2} \\
2 x^{2}-6 x-8 & =0 \\
2\left(x^{2}-3 x-4\right) & =0 \\
2(x-4)(x+1) & =0 \\
x & =4,-1
\end{aligned}
$$

$y=x^{2}-4 x+4=4^{2}-4(4)+4=4$
$y=(-1)^{2}-4(-1)+4=9$
Points of intersection: $(4,4),(-1,9)$
34. $y=3 x^{2}+9$
$y=2 x^{2}-5 x+3$
$3 x^{2}+9=2 x^{2}-5 x+3$
$x^{2}+5 x+6=0$
$(x+3)(x+2)=0$
$x=-3,-2$
$y=3 x^{2}+9=3(-3)^{2}+9=36$
$y=3(-2)^{2}+9=21$
Points of intersection: $(-3,36),(-2,21)$

